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RESEARCH MEBIORANDUM 

ANAIYSIS OF TLTRBOp4ACECNE VISCOUS Ix)sSES AFFECTED BY CHANGES 

IN BLADE GEOMETRY 

By James W. Miser, Warner L. Stewart, and Warren J. Whitney 

The ef fec t  of changes i n  blade  gemetry on the viscous  losses  in 
turbomachines is  analyzed. The variables affected by changes i n  blade 
geometry that are  considered are blade number, sol idi ty ,   aspect   ra t io ,  
Reynolds number, and trailing-edge  blocksge. For  changes in blade geom- 
etry tha.t involve a change in blade chord  length,  the  viscous  losses are . 
assumed t o  vary inversely as the one-fifth  parer of the flaw Reynolds 
rimer based on the  blade chord length. 

Viscous loss can be expressed as a function of three  variables: the 
blade  height-to-spacing  ratio,  the  solidity, and a height Reynolds nuuiber. 
Variations of the first two resu l t   in   counterac t ing   e f fec ts  of the end- 
wall or  the  blade  surface areas, or  both, and the momentum lose per unit 
surface area. Thus, optimum values of blade number and solidity can  be 
determined fo r   t he  example turbine experimental data presented. However, 
f o r  var ia t ions  in   the  height  Reynolds number, there is no e f fec t  of area 
to counteract  the  effect of changes i n  the  chord Reynolds number; there- 
fore,   for  every  increase  in  the height Reynolds number an improvement i n  
aerodynamic pe r fomnce  i s  predicted. 

In  the  analysis it i s  determined that the  blade number can be changed 
over a wide range from the optimum value wlth l i t t l e   e f f e c t  on blade v i s -  
cous loss. For changes of s o l i d i t y  only, experimental data indicate that 
s o l i n i t y  can  be  varied  over a more l imited range with very l i t t l e   e f f e c t  
on the  blade  viscous loss. 

Because  changes in the  trailing-edge  blockage also affect  the  blade 
total-pressure loss, the   effect  of varyhg trailing-edge  blmkage i s  
analyzed.  *ailing-edge  blockage  might a f f ec t  t o  a large  extent  the n u -  
ber of' blades that correspond t o  the minFmum total-pressure loss, espe- 
c i a l l y  f o r  large  trailing-edge  thicknesses. 
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IMTRODUCTION 
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+ :  

As part of  the NACA turbomachine  research  program, the various 
factors  that  affect  the  Bource and magnitude  of  the  aerodynamic losses 
within blade  rows  are  being  studied.  The  results of these  investigations 
should  provide  the  basis  for  design of more  efficient  turbines  and poht 
to  new  areas of research. 

The  principal  aerodynamic  losses in turbomachines are attributed 
to the  development of a boundary layer on the  surfaces  of  the  blades and 
the  inner  and  outer walls. Recent  investigations  have  been  made  wfth 
regard  to  the  possibility of correlating Losses in  turbomachines on the 
basis  of  basic  bounc5bry-layer  parameters.  Reference 1 describes  the  basic 
boundary-layer  parameters  at  the  blade  trailing  edge  and  presents a method 
for  calculating a two-dimensional loss from  these  parameters  for an as.:_ 
sumed  simple-power-law  velocity  profile.  Reference- 2 -SK&w& that blade 
wakes  obtained  experimentally  can  be  satisfactorily  approximated by the 
simple-power-law  velocity  profile with an exponent of 1/7. Reference 3 
presents a mean6 of  obtaining a three-dimeneional 10S6 based on mesn- 
section  boundary-layer  parameters  that  are  assumed to represent  the 
average  momentum loss Over  both  the  blade-and  the  end walls. On the 
basis of the  preceding  investigations,  reference 4 presents a method of 
obtaining an effective  mcanentum  thickness  for  rotors  based on turbine 
over-all  performance  and  knowledge of stator  losses. 

Using  the  relations  between  boundary-layer  parameters and blade l o s s  
developed in references 1 to 4, an analysis  is made herein of the  effect 
of changes i n  blade  geometry on the  viscous  lossee in turbomachines.  The 
variables  affected  by  changes  in  blade  geometry that are  considered  are 
blade number,  solidity,  aspect  ratio, and Reynolde  number. 

This report  also  presents a method of opthizing the  blade  number 
and s o l i d i t y  for a given  application iPthe blade loss variation  uith .. 
soliclity  can  be  estimated  or  experfmentally  determined. Also discussed 
are  the  penalties in performance that accompany  deviations  from  optimum 
values  of  blade  number  and  eolidity.  Because  trailing-edge  blockage  af- 
fects  the  selection  of-blade  number, i t s  effect on blade losses is also 
considered. 

METHDD OF ANALYSIS 

The over-all blade losses  considered in this  report  can  be  divided 
Fnto two  parte: (1) the blade viscous ~ O S S  resulting from the develop- 
ment of a boundary layer on the  blade  surface and (2) the mixing loss 
associated WFth the  mass-flow  void  behind  the  blade  trailing  edge. For 
a given  trailing-edge  blockage  and  flow  velocity diagram, the  blade  vis- 
cous loss can  be  considered  to  be  independent  of  that  due  to  the 
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trailing-edge  blockage. However, i n  determining  the optimum  number of 
blades on the  basis of the min imum over-all  blade loss, the  effect  of the 
trailing-edge  blockage must be considered. For this reason,  the  effect 
of trailing-edge  blockage on over-all  blade loss  i s  discussed i n  the sec- 
t i on   en t i t l ed  RESULTS OF ANALYSIS. 

If the  blade  viscous loss i s  considered t o  be  independent of the  ef- 
f e c t  of trailing-edge  blockage,  a  relation between blade geometry  and 
blade  viscous 108s can be developed. From t h i s  re la t ion,  optimum values 
of some of the  blade  geometric  quantities  are  obtained, and  then  the  ef- 
f e c t s  of deviating from these optimum values are  determined. 

In reference 1, changes in the  over-all  blade  viscous loss  were 
found t o  be d i rec t ly   re la ted   to   the  momentum thickness at  the t r a i l i n g  
edge expressed in terms of a momentum-thickness parameter e*. (See 
appendix A fo r  def ini t ions of symbols used i n  this report.)  Therefore, 
changes i n  the value of the momentum-thickness parameter @ a re  used 
herein  to  represent  the  trends of changes in the blade viscous loss wfth 
changes i n  the blade geometry. 

Throughout this report, f u l l y  developed  turbulent-boundary-layer 
conditions  are assumed. For turbmachines, this asswnptlm appears t o  
be i n  good agreement with experimental resu l t s   ( see   re f ,  2) .  

Relation between  Blade Geometry and Blade  Viscous Loss 

As a fluid passes over any surface, a boundary layer  develops be- 
cause of the  viscosity of the fluid. The viscous loss  resul t ing from 
the development  of the boundary layer is often  described  in terms of a 
momentum t h i c h e s s  8 (see ref. 1). Considering  the  two-dimensional 
blade shown i n   f i g u r e  1, a boundary layer would build up on both the suc- 
t ion  and pressure  surfaces;  therefore,  there would be 8 momentum thick- 
ness f o r  each  surface, namely 8, and GP. The sum of t h e  momentum 
thickness on each  surface is termed a t o t a l  momentum thickness @tot. 

In reference 4, the  average  blade  surface  length was closely ap- 
proximated by the blade mean camber length. This reference a l s o  pointed 
out t ha t  the   ra t io  of the  blade mean camber length  to  the  blade  chord 
length  c is  almost a constant for a given  velocity diagram over a wide 
range of so l id i t i e s .  In the  subsequent  development, it is more advan- 
tageous t o  express the two-dimensional blade surface area i n  terms of the 
blade chord length c; therefore,  the momentum loss per unit blade  surface 
area i s  represented  herein by Btot/2c. This use of the  blade  chord 
length  instead of the mean camber length  affects only the magnitude of 
the momentum loss  per unit surface  area and i n  no w a y  affects   the  resul ts  
of the analysis  presented  herein. 

! 
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.The viscous lose along a blade surface depends on the veloci t ies  
and flow  conditions along the  surface.  Reference 2 shows that the momen- 
tum thickness a t  any point along the  blade  surface can be  expressed by c 

the  following  equation, which i s  equation (6) of reference 2 rewritten 
with the symbols of t h i s  report: 

,% 

02 

\ J 

7886 

(1) 

where - 

- 1 = 2.6 Refa,z 1/14 
n 

The free-stream Reynolds number Refs,z at any point along the  blade 
surface is based on the surface  lengkh frm the leading edge t o  the 
point in question. m e  form 
factor .  

For variations in blade 
dis t r ibut ion along the blade 

fac tor  H i e  the compressible-flow form 

gemetry that do not  affect   the  velocity 
surfaces, equation (1) shows tha t  

e -0.2l-l - C -R=c,fs 

where the  chord  length c is again used t o  approximate the  blade sur- 
face  length. The eGonent-of -0.2LL agrees  closely with the exponent of 
-1/5 that is comonly  used. i n  discussing vlscous loases of turbulent 
boundary layers  (e .g . ,  ref  8 .  5 and 6)  . I n  the following development, 
the momentum loss per unit blade surface area i s  aseumed t o  vary i n  a 
m a n n e ~ s i m i l a r   t o  that based on one surface only, as i n  equation (2), 
so  that- 

- %ot -m 
2c - Rec 
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e where 

3 Rec = IJ. PWC 

In the  calculations  of values used i n  the  figures of this  report,  the 
value of m is  assumed  equal to 1/5. 

5 

For variations in blade gemetry that do affect the surface  velocity 
distribution,  such as a change Fn channel  shape for a given soUdity or a 
change in the  solidity  itself,  equation (1) shows  that  the  value  of  the 
momentum  thickness  for  each  surface will change, and thus the t o t a l  mo- 
mentum  thickness  Btot will change.  Therefore,  even  though  the  blade 
number  and  blade  chord  are  specified,  there cas be a multitude of values 
of @tot  for a given  velocity diagram. 

To understand the changes in total  momentum  thickness  with  changes 
In  velocity  distribution,  first  consider a blade of minimum solidity . 
that would have high blade loading. Such a blade  could have a high ve- 

channel  designed for high  velocities on both  surfaces. In this  case, 
the  momentum l o s s  per  unit  blade  surface area Btot/2c would be high. 
Next,  consider a blade of almost  infinite  solidity f o r  which  the  veloc- 
ities  on  both  surfaces would appraach  those of the  axisymmetric solution. 
In  this  case,  the  momentum loss  per  unit  blade  surface  area  €3tot/2c 
would  approach a constant.  Between  these  two  extremes  of solidity,  the 
value of Btot/2c  depends  not only on the  solidity  but  also on the  sur- 
face  velocity  distribution for each  solidity. 

. - locity  level on both  surfaces as a result  of  both a low solidity and a 

3 

In  addition  to  the  velocity  level on the  blade  surfaces,  the  static- 
pressure  variation  along  the  blade  surface must ale0 be comidered.  For 
instace, as the solidity is decreased, the loading  per  blade  must in- 
crease  to  maintain  the  same  velocity  diagram; and, as blade loadhg in- 
creases,  the  static-pressure  difference  between  the  two  surfaces & h O  
increases. If the  static  pressure on t.he suction  surface  decreases  be- 
low that at the  blade  exit,  then a static-pressure  rise  must  occur, 
causing  the  boundary  layer  to  thicken  rapidly and  possibly  separate from 
the  surface. (This boundary-layer  condition is knowq as surface diffu- 
sion.) If the  static  pressure on the  pressure  surface  rises  above  the 
static  pressure at the  blade  inlet,  then a surface  diffusion would occur 
on  the  pressure  surface. Thus, it  can  be  seen  that  for a given  solidity 
a wide  range of blade  losses  could  occur,  depending on the  amount of sur- 
face  diffusion  that  is  allowed  to  occur  and on which  surface  the diffu- 
sion talres  place. 
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In view of the multitude of values of 8tot/2c that could  exist  
f o r  a given  solidity, it i s  necessary  to define which values  should be 
used f o r  each  value of solidity;  otherwise, an expression of etOt/2c 
as a k c t i o n  of so l id i ty  would be  impossible. In an analysis of this 
sort, the m i n i m u m  momentum loss per  unit  blade  surface area for a given 
so l id i ty  and velocity diagram should be used. With the  design  procedures 
oFreferences 7 and 8, the  authors feel  that it i s  possible  to  control 
the surface  velocit ies  at-design  operating  conditions  to  at tain  close  to 
a minimum  momentum loss per uni t  blade surface area. W i t h  the surface 
velocities  thus  controlled, it seems reasonable that 8tot/2c can be ex- 
pressed as a function of solidity. 

With the preceding  stipulation on the  momentum loas per  unit  blade 
surface  area,   for a given solidity  the  value of Btot/2c f o r  one value 
o f .  the  blade  chord  length  c can  be related t o  that for a reference 
value of blade chord length by equation (3), whfch s h m  that 

. 

- =(%)rd. Re, ) 2c 
@tot   ec , rH 

I n  a two-dimensional  cascade  such as shown i n  figure 2 the blade 
loss can  be  described by a momentum-thickness parameter which *' 
represents the tangential  projection of Btot divided by the 
blade  spacing  (see ref. 1) , or 

which modified is  

Substituting  equation (5) into  equation (6) and simplifying give 

@to t  Ret, ref m * 
'2-D =(-.-),,x Rec ) s cos B1 

C 

I 

For the  three-dimensional case of-turbomachines, the inner and outer 
walls also  contribute  to the viscous loss o F a  blade row; therefore, a 
three-dimensional  analysis must be considered that includes the wall ef- 
fect. Reference 3 shows that the three-dimensional loss can  be satis- 
factor i ly   predicted frm the two-dimensional 1oss.based on mean-section 
conditions by the  following rel-ation: 
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where cr, i s  the blade  stagger  angle, u is  the blade solidity, and sd 
I s  the  aspect  ratio.  Then, substituting  equation (7) into  equation (8) 
and replacing IT& by f t P  equivalent, b/s, result i n  

Substituting  equation (4) into  equation (9) gives 

To organize  equation (LO) a l i t t l e  d i f fe ren t ly ,   l e t  

c 

Then, substituting  equation (11) fnto  equation (lo), Q for c/s, and 
rearranging  the 

* 
‘3-D 

terms give 

! 

J I- 
A B c 

I 

I 
! 

By arranging  the  terms i n  equation (12) as shown above, the  vlscous loss 
f o r  a given  velocity diagram, as represented here by EL three-dimensional 
momentum-thickness parameter, i s  shown t o  be a function of three veri- 
ables,  the  blade  height-to-spacing r a t i o  b/s, the blade mean-section 
so l id i ty  6, and a Reynolds number based on blade  height R% (herein- 
a f t e r   ca l l ed  a height Reynolds number). Examples of the changes in 
blade  shape f o r  each of these  variables  are  given i n  f igure 3. The ef- 
f e c t  of the change of each variable is determined i n  the remainder of 
the  analysis and is discussed i n   t h e  RESULTS O F  ANALYSIS. 

a 

i 
I 

I 

J It should  be  noted that the  blade  stagger  angle as and the  blade 
ou t l e t   r e l a t ive  gas-flow angle P1 are   l a rge ly  dependent on the  velocity 
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diagram and a r e  appraximately  constant f o r  a particular  application; 
therefore,  they  are  considered to be  constant f o r  each set of design 
conditions. 

Wit11 regard t o   s t a t i n g  ( etot/c) ref as a function of so l id i ty  u 
i n   eqmt ion  (12), i m h o u l d  be remembered that, according to  previous 
st ipulations,   there i s  considered t o  be only one value of Btot/c f o r  
each  value of so l id i ty  based on the mlnimum momentum loss per  unit-blade 
surface area f o r  a given  solidLky and velocity diagram. 

Determination of Optimum Blade Geometry 

Equation (12) show6 that the vlscous loss  of a blade row is a func- 
t ion  of three independent-vEtriabl.es, the blade height-to-spacing  ratio 
b/s, the solidity 6, and the   he fgh t -RFo lda  number Rq,. Because of 
t h e  independence of these three variables, an optimum value of t he  
momentum-thicknese parameter e3-D- ..can be  determined by optimizing  each 
variable  separately. Also, t h e   d f e c t o f  each m i a b l e  on can be 
studied  independently. 

Blade  height-to-spacing r a t i o  and  related  parameters. - For EL de- 
crease i n   t h e  blade height-to-spacing  ratio b/s resul t ing from a change 
i n  blade  spacing B (holding so l id i ty  d and height Reynolds number Reb 
constant)  as shown i n  figure 3(a}, the   total   surface  area of a l l  the 
blades does not change, but  both the chord  length and end-wall. areas in- 
creaBe. As the chord  length becomes longer,  the  chord Reynolds number 
Rec increases. Thus, by equation (3) the- momentum loss per  unit blade 
surface  area  decreases.  Counteracting the e f f e c t  o f  this  reduction  in  the 
momentum loss per  unit  surface  area is the- increase in end-wall area over 
which the momentum l o s s  occurs.  This  counteraction  indicates the  possi- 
b i l i t y  of' obtaining some  optimum value of b/s (or, i n  e f fec t ,  an optimum 
number of blades) which would be required  to  give a minimum value of blade 
viscous loss .  . . . . . ." .. . 

To determine a minimum value of 8 3 - ~  as a function of the  blade *. 

helght-to-spacing  ratio b/s (holding CI and R% c o n s t a t  as indi- 
cated  by  subscripts on the  par t ia l   der ivat ive) ,  l e t  

. 
L 

I 

I 

- = I  
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The value Of the  Optimum  blade  height-to-spacing  ratio ca,n then  be  ex- 
pressed as 

Because  the  value  of m can  be  assumed eqml to 1/5, the  value  of 

approximately  specified by  the  blade  velocity  diagram  (see appendix B) . 
Therefore, on the  basis of the velocity d i a g r a m  alone, an optimum blade 
height-to-spacing  ratio  can  be  determined. 

(b/d  opt is thus  determined by  the  stagger  angle as, which  itself is ! 

';". In order that 
53 preted i n  terms of 

a 

the  results of the  preceding  analysis can be  inter- 
the  blade  number N and the  aspect  ratio &, let I 

I 

b = r  t - r h =  

and 

Now, since  the  hub-tip  radius  ratio i s  specified by the  velocity cilagram 
and  since  (b/s)  opt  is known from equation (13), then the optimum number 
of  blades  for  these  conditions and a constant  hub-tip  ratio frm blade 
inlet  to  outlet  can  be  obtained  from the following rearrmged form of 

L - 

I equation (16) : 

I 

I 
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Nap t 

or  from i ts  equivalent form 

Curves of Nopt a s  a function of rh/rt f o r  a range of values of as 
are shown in  f igure.  4 for an m of 1/5. 

The mlue   oL the  opthum blade  height-to-spacing  ratio  determined 
by equation (13) corresponds t o  a par t icular  value of the  product of the 
so l id i ty  CJ and the   aspect   ra t io  4, a8 shown by 

Equation (18) can be interpreted t o  mean that f o r  a given  velocity dia- 
gram and a given so l id i ty   there  is a value of the  aspect r a t i o  wklch all 
r e s u l t  in a minimum viscous 1068 f o r  the given  conditions. Figure 5 
shows such values of aspect  ratio  over a range of s o l i d i t i e s  and velocity 
diagrams (as shown by the stagger angle as>. If the optimum sol id i ty  is 
known o r  estFmated from appendix B, then an optimum aspect   ra t io  can  be 
determined. 

Solidity.  - For an increase i n  so l id i ty  u (holding the blade 
height-to-spacing  ratio b/s and height Repolds number. R% constant), 
the blade chord length c and the  surface areas of both the  blade and 
end walls increase as shown i n  figure 3(b) . The momentum loss per unft 
surface area 8tot/2c  decreases- as a r e su l t  of both R decrease i n  the 
blade loading [which decrease8 the velocfties on the bLade surfaces, as 
discussed  previously) and the   e f fec t  o f - a n  increase in the chord Reynolds 
number (see eq. (3)). Counteracting this reduction  in the momentum l o s s  
per unit surface  area i s  an increase in the t o t a l  blade surface and end- 
wall area over which the momentum 1096 OCCUTB. This counteraction indi- 
cates   the  possibi l i ty  of obtaining an optimum so l id i ty  that would r e su l t  
in a minimum value of blade  viscous loss. 

I .. 
I 
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I 

c To d e t e d n e  a minimum value of viscous loss with  respect  to solidity 
(holding b/s and R% constant), l e t  ! 

2 
0 
d 

N I  
I 

3 

I 

From equation (12), 

The value of the optimum so l id i ty  can then be expressed as 

and t o  express it a0 

L i  [-%I 
Thm, by fur ther  rearrangement, 

uopt 

t Therefore, i f  ( 8tot/c)ref i s  p lo t ted  as a function of s o l i d i t y  a on 
logarithmically  scaled  paper,   the  optima  solidity aopt can be deter- 

-(1 - m), as i n   f i g u r e  6 fo r   t he  example turbines. 
z mined by the point where the  slope of a tangent t o   t h e  curve i s  equal  to 

I 
I 

I 

I 
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HeightReynolds number. - The height Reynolda number R% can 
change as a r e su l t  of both a change i n  blade height  and a change i n  the 
blade  inlet  flow conditions. In the  following development, only the 
change i n  height Reynolda number resul t ing from a change in  blade  height 
i s  considered. The e f f ec t  of a change in  height Reynolds number result- 
ing frm a change i n  the   in le t  flow conditions i s  discussed i n   t h e  sec- 
t ion   en t i t l ed  RESULTS OF ANALYSIS. 

The turbine  design  conditions  thatremain  constant  during a change 
in   he ight  Reynolds number resul t ing frm 8 change i n  blade height on ly  
are the  hub-tip  radius  ratio,   the  rotor  t ip speed, and the  velocity dia- 
grams a t  corr.esponding radial posi t iom. In order  to  hold these condl- 
tions  constant,  the weight  flow ctnd annulus area must vary a8 the  square 
of t h e   t i p  diameter. 

For an increase  in  Reb a0 prescribed  (holding  the  blade  height- 
to-spacing  ratio b/s and so l id i ty  u constant, f i g .  3( c) ), the  
t o t a l  end-wall and blade surface areas increase as the  square of the 
t i p  diameter, and the chord length c increases  directly a8 the  blade 
heFght (or  t l p  diameter) . The increase i n  the blade chord length c 
r e su l t s  Fn an  increase in t h e  chord  Reynolds number  Rec, which re-  
sults i n  a reduction i n  the momentum loss per  unit  surface area (see  eq. 
(3) 1 . For the  specified  increase in R q ,  the .  weight flqw and total 
surface area increase  proportionally;  therefore, on the basis of the mo- 
mentum.10~~ per unit -of free-stream momentum, the  effect  of the increase 
i n  chord Reynolds rider on the  reduction of the momentum loss per  unit  
surface area is  not  counteracted by the  increase i n   t o t a l   s u r f a c e  area 
a8 in  the  case of changes in  the  blade  height-to-spacing  ratio  b/s and 
solidity 0. Then, as the  blade  height Reynolds number increases,  the 
viscous  losses as defined by the mamentum-thickness parameter -9g-D . 
would decrease; and, since  there i s  no counteracting  effect of’ a change 
in  surface  area,   there will be no optimum value of the  height Reynolds 
number. 

To veri- the preceding  discussion  mathematfcally,  letting R% 
vary and holding b/s etnd u constant, set 

(%&,,, = dc = 0 

From equation (12), 
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For  equation (22) to be true,  the value of R e 6  must approach  infinity; 
therefore,  there  is no minimum  value of 8 3 - ~  obtainable  for  changes in 

* 
d Reb Only. 

Effect  of  Changing  Blade  Geometry 

Sometimes a compromise has to  be  made  between aerodynmic efficiency 
and mechanical  considerations;  therefore, it  is  important to know what 
penalty is paid i n  performance by deviating  from an optimum  blade  con- 
figuration. In  the,following  sections  the  difference in the loss for a 
given  blade  configuration and that  for an optimum or reference  configura- 
tion is indicated by the  ratio of a momentum-thicknesa  parameter to 
either a minimum or reference  momentum-thickness  parameter.  The  changes 
in geometry  that are studied  are  defined by the  three  primary  variables 
previously  considered,  namely,  the  blade  height-to-spacing  ratio  b/s, 
solidity 6, and  height  Reynolds  number  Reb,  where  the  blade  inlet  flow 
conditions  are  considered  to  be  constant. 

- Blade  height-to-spacing  ratio. - From  equation (121, the  change in 
the  value of the  momentum-thickness  parameter with a change in the  blade 
height-to-spacing  ratio  b/s  for a given  velocity diagram (holding the 

ure 3(a) can  be  expressed by 
d solidity Q and  height  Reynolds  number R% constant) as shown in fig- 

Having prescribed the blade  height b constant by assuming a constant 
value of the  height  Reynolds  number  Reb  as  discussed previously, then, 
for a given  hub-tip  ratio, 

which,  rearranged,  is 

b - 
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SUbetitUting  equation (13) into  equation (25) gives 

- =(: - 1) cos a8 - b N 
S Nopt 
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Then, substituting  equations  (13)  and  (26)  into  equation (23)  and  simpli- 
fying  give 

The varfation of the momentum-thickness parameter  wlth  the nunber of 
blades as given in equation ('27) i s  shown by figure 7(a) and is d i s -  
cussed. in t h e  RESULTS OF ANALYSIS. 

Solidity.  - Frm  equation (12), the change in   the   va lue  of the 
momentum-thickness parameter with R change i n   s o l i d i t y  u f o r  a given 
velocity diagram (holding  the blade height-to-spacing  ratio b/s and 
height Reynolds number  Reb constant) as shown in f igure 3(b) can  be 
expressed by 

(*) (5 1-m 
ref  

1-m 
ref, opt %Pt 

Values of ( 8tot/c)ref  could  be  obtained from a curve of btot/c &B a 
function of IS such as f igure 6. The curve i n  figure 6 i s  based on the 
experfmental performance. of four turb ine   ro tors   d i f fe r ing  only Fn so- 
l i d i t y .  The method for  obtaining the value of Btot/c f o r  each  rotor 
i s  discussed i n  connectLon with the DESCRIPTION OF ExcuII1pT;E TURBINES. 

From figure 6, value8 O F (  Btot/c)/(  Btot/c)opt were calculated  for a 
range of' values of U / I S ~ ~ ~ ,  assuming that the optimum values  correspond 
t o  the point  where the  slope of the curve i s  equal t o  -(1 - m> as pre- 
viously  discussed. Then, by substituting  these  values  into  equation (28) 
and  using an m of 1/5, corresponding  values of q-D/q-D,m, were 

figure  ?(b)  and is discussed later in the RESULTS OF ANALYSIS. 

. ." .. 

calculated. The ValdatiOn O f  e5-D/%-D,dn  With IS/Uopt i S  Shorn in 

Blade height-to-spacing r a t i o  and so l id i ty  cambined. - For a given 
velocity  diagran, the effect  of varying the b1aci.e height-to-spacing  ratio 

. 

I 

- 
! 
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I 

f (or  blade number) and so l id i ty  (holding the height Reynolds nuniber R% 
constant) can be determined  by  superhposing  the  effect of one  upon the - other. From equations (27) and (281, 

Because the  effects  of varying the blade  height-to-spacing  ratio and 80- 
l idi ty   are   represented by a product i n  eqwtion (29), the   e f fec t  of vary- 
ing one of these two variables, holding  the  other  variable a t  some value 
other than optimum, is  t o  increase by a constant mult ipl ier  the amount 
of the change of % - ~ / 4 - ~ , ~ ~  wfth the chosen variable. For example, 
f o r  a constant N/iVopt ?? 1.0 the  effect  of a s o l i d i t y   v d a t i o n  on 
~ T - D / % - D , ~ ~  is  magnified by the value of % - D / % - D , ~ ~  calculated 
by equation (27) f o r  the particular  value of N/Nopt. A similar ef'fect 

c'/nopt 3 1.0. The combination of the ef fec ts  of changes in blade number 
and so l id i ty  on the   vdue  of s-D/e;-D,&n is shown i n  figure 7(c) and 
is discussed later in the RESULTS OF ANALYSIS. 

* 
On the  variation Of & D / 8 5 - D , d n  with M/Mopt * e x i s t s   f o r  

- 

Aspect r a t io .  - In  order t o  determine the v a r i a t i o n   i n  the momentum- 
thickness  parameter with changes Fn aspec t   ra t io  for  a given  velocity 
diagram (holding t h e  height Reynolds number R% constant) ,   substi tute 
equation (18) into  equation (24) as follows: 

Then, on the basis of the discussion of equation (L8), for en optimum 
value of sol idi ty ,  an optimum aspect  ratio  can be determined. Then, 
assuming 8.n optimum solidity f o r  the condition of an optimum blade 
height-to-spacing  rqtio,  equation (30) can be resrmnged i n  the follow- 
ing form: 
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Now, i f  d/dopt is assumed t o  be constant,  then  equation (31) repre- 
sents the equation of a straight l i n e  through  the  origin with a slope of 
(a?/dopt)-l. Such l ines  of cons-t are shown on figure 

constant height and  constant  chord  length,  but varying blade number and 
7 ( C ) ,  and  they indicate the var ia t ion O f  @2-D/8;-D,dn f o r  blades O f  

so l id i ty  . 

- .  
.. 

Height Reynolds number. - As previously  discussed, there is no op- 
timum value of the height Reynolds number Reb obtainable;  therefore, 
the  variation of the mmentum-thickness  parameter with a change i n  Reb 
f o r  a given  velocity diagram (holding the blade  height-to-spacing  ratio 
b/s and so l id i ty  a constant) i s  based on a specified,  or  reference, 
value of- Rq, as i n  the following equation: 

( 9 - D  ) =( R% )-m 

%-D, ref b/s, u R% , ref 

For constant in le t  f low conditions,  equation (32) can be expressed as 
* 

As shown by equation (32), the momentum-thicknesa parameter 83-D 
varies 8 s  the -m power  of the height Reynolds number f o r  the condi- 
tions  specified. This var ia t ion of 8 ; - ~  with R- i s  shown i n   f i g u r e  
7(d)  and i s  discussed i n  the RE3ULTS O F  ANALYSIS. 

* 

DESCRImIQN OF ExAplpLE TURBINES 

The four turbines chosen f o r  use i n  the development of the analysis 
of this report  have been previously  reported i n  reference 9. Also a s -  
cussed i s  a f i f th  turbine  reported i n  reference 10. All f i v e  turbineB 
are  briefly  discussed  herein, and same of the geometric  and  performance 
variables are given i n  table I, More complete descriptions of the de- 
signs and t e s t   r e s u l t s  are given i n  references 9 and 10. 

The fou r  turbines of' reference 9 differed in the  number of rotor  
blades only, and they  consisted of 64, 44, 32, and 24 blades. The blade 
shapes were the same f o r  each number of-blades; and, t o  change the blade 
spacing f o r  dlfferent  numbers of blades,  spacers were placed between the 
blade  bases. It should  be  noted that the variation i n  number of blades 
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+ r e s u l t s   i n  a variation of so l id i ty  without a subsequent change i n  blade 
prof i le   to   cont ro l  the blade surface velocit ies.  In s p i t e  of this, low 
surface  diffusions  probably  occurred  because the  flow  within the rotor 
passage  turned  through an angle of only 51° at the mean section. There- 
fore,  the  four  turbines of reference 9 should yield a variat ion of blade 
viscous loss that i s  fair ly   representat ive of the  values of minimum v i s -  
cous loss  f o r  each  value of so l id i ty .  

* 

The example turbines had a t i p  diameter of 14 inches and a hub-tip 
r a t i o  of 0.6. The chord setting angle of all the  rotor blades w a s  28O. 
The blade-section  coordinates  for the 88-blade ro tor  were half those  for 
the 44-blade rotor .  For  each of the five  turbines,   the same s ta tor   blades 
were used. 

The viscous l o s s  calculated  Lor the f ive  turbine  rotors  was based on 
an effect ive momentum thickness B t o t  calculated f o r  each of the rotors  
by the method given i n  reference 4. The ef fec t ive  momentum thickness  for 
each  rotor w a s  determined from a rotor  loss total-pressure  ratio  based 
on experimental  performance data obtained at design operating  conditions. 
In order t o   ca l cu la t e  the ro tor  loss  total-pressure  ra t io ,  it was neces- 

Y sary t o  determine the turbine  over-all   total-pressure  ratio at  design 
3 specif ic  work and  speed by interpolat ing between total-pressure-mtfo - contours shown on an experimentally  obtained performance map. It was 

also necessary t o  obtain a value of loss total-pressure  ra t io  for  the 
s t a to r  used. 

The design-point  efficiency based on the interpolated  value of total- 
pressure  ra t io  can be calculated  to   three decimal  places w3th only a 
probable  error of about 1 i n  the third place due t o  the interpolation. 
Although the absolute  value of efficiency t o  t h i s  degree of accuracy i s  
questLonable, the trend of the rotor  viscous loss based on the perfom- 
a c e  maps  of the  five  turbines  should  be fairly accurate,  because  the 
same test facil i ty,   instrumentation, and procedure were used for each 
turbine. The variat ion  in   design-point   eff ic iency of the four   twbines  
of reference 9 i s  presented as a function of s o l i d i t y  cr i n  figure 8. 
If figure 8 is cmpared with figure 6(a> of reference 9, it should be 
noted that reference 9 campsres the four turbines on the basis of a max- 
hum efficiency  and a s o l i a t y  based on the axlal blade chord  length. 
Therefore, the values i n  figure 8 are not equal t o   t hose   i n   f i gu re  6(a> 
of reference 9. 

RESULTS OF ANALYSIS 
le 

In previous  sections, the var ia t ion of viscous loss with changes in - blade geometry has been  developed. The pr incipal   var iables   that  were 
found.ts have a d i rec t   e f fec t  on the viscous l o s s  f o r  a given  velocity 
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diagram are the blade height-to-spacing  rati-o  b/s, the so l id f ty  Q, and 
the height Reynolds number Reb. The re su l t s  of the previous  analysis 
and the  significance of each of' these  variables are discussed below. 
Since  the  trailing-edge  blockage  also  affects.the  over-all  blade loss 
after mixing, a brief'  account of i t s  ef fec t  on the  selection of the num- 
ber of blades that will r e su l t  in the minimum over-all blade loss  will 
be  discuaeed i n  connection with the effect-of  the  blade  height-to-spacing 
ra t io .  

Blade Height-to-Spacing  Ratio 

A s  pointed  out  previously,  the  effect o f ~ i n g  the blade height- 
to-spacing  ratio  (holding  the solidity u and  height Reynolds number 
Rq, constant) as shown i n  figure 3 ( ~ )  r e su l t s   i n  a chord Reynolds num- 
ber   effect  on the-momentum loss per unit surface  area, which i s  counter- 
acted by a change i n  the  area of tAe end walls, while  the  total  blade- 
surface  area remains  constant;- These counteracting  effects are shown by 
figure  7(a)  to  counterbalance  each  other 6veF-i"wide range of blade- 
number ratio N/Mopt, especially a t  blade numbers greater  than the opti -  
mum. For example, over a range of N/Nopt fram 0.37 t o  2.60 (a change 
i n  blade number.of about 7 t o  1) the change i n  the momentum-thickness 
parameter  never  exceeds 10 percent o f t h e  m i n i m u m  value.--- A similar re- 
sult is shown i n  figure 48 of reference 11, which gives the var ia t ion   in  
compressor efficiency d t h  the number  of blades. 

This insens i t iv i ty  of blade loss twa  change in number of blades is 
also indicated by the experimental and predicted  losses of the  88-blade 
rotor  of reference 10 and the 44-blade rotor  0f"reference 9.  Both of 
these  rotors were designed for   the same solidity, blade  height, and 
stagger  angle  and  operated a t  s i m i l a r  i n l e t  flow  conditions.  Therefore, 
the fundamental difference between the rotors was the number of blades 
(or aspect   ra t io)  . C o n r p a r i n g  the design-point  efficiencies  determined 
by the method of interpolation  discussed  in the DESCRIPTION OF EXAMPLE 
TURBINES shows thae the  efficiency of 0.887 f o r  the 88-blade  rotor i s  
slightly  lees  than  the 0.891 fo r   t he  44-blrtde rotor.  These two values 
of efficiency can  be  considered  equal  considering  the  possible  experi- 
mental  error; however, it is in t e re s t ing   t o  compare this small change in. 
efficiency with the  predicted change i n  the rotor  blade viscous loss a6 
indicated by f igure 7(c) .  The optimum values of blade number a d  so l id i ty  
used in determining the  location of the data points for the two ro tors   in  
f igure 7(c) were based on the opthum values predicted i n  the METHOD OF 
ANALYSIS. The data point fo r  the 44-blade rotor is on an "P/dopt l ine  
of 0.9 and i n  a region of B$-D/Bz-D,min less  than 1.01, and the data 
poFnt f o r  the 88-blade rotor  i s  on an gdlSdPopt l ine  of 1.8 and in a 
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region  of 8 3 - D / 0 3 - D , d n  of  about 1.038. This small difference  in  the 
momentum-thickness-parameter  ratio  indicates  that  the  88-blade  rotor 
would  have a slightly  higher  viscous loss than  the  44-blade  rotor. Com- 
parison  of  this  result with the small difference in design-point  effi- 
ciencies  shows  that  the slight increase in viscous loss  agrees with the 
slight  decrease in efficiency. This comparison and results  discussed 
later  indicate  that  for  the  five  example  turbines an increase  in 
&D/ 9'" 3-D,min of 0.01 corresponds t o  a decrease in efficiency of about 
0.001. 

Y *  

Because  the four turbines of reference 9 have  the  same  aspect ratio, 
their  values  would  be  located on the  constant d/dopt line through the 
data  point  for  the  44-blade  rotor  shown in figure 7( c) . The  experimental 
variation  of  etot/c  with a used to obtain t h i s  figure is represented. 
by the  variation  of 82-D/9g-D,min along this canstant d/d& line. 

In the  method  presented  for  determining  the  optimum  number  of  blades 
for a given  velocity diagram, the  losses  associated  with  the  trailing- 
edge  blockage were assumed  to be conatant. If, however,  the  trailing- 
edge  thickness  cannot  be  reduced as the  blade  number is increased,  the 
trailing-edge  blockage  must  increase with an increase in the  number  of 
blades.  Although  the magnitude of the  change in over-all  blade loss with 
a change in trailing-edge blochge cannot  be  accurately  determined by 
theory,  the  trend of the  changes can be  obtained from the  theory.  For 
example,  the  results  of a series  of  calculations  made  for  the  statqr of 
reference 8 by  the  method.given in appendix C are shown in  figure 9. In 
this  figure,  the  variation in the loss total-pressure  ratio  ph/pt)  repre- 
sents  the  variation in the over-all blade loss after  mixing. 

In figure 9, the  values  shown  for  zero  trailing-edge  thickness  repre- 
sent  the  variation in the over-all blade ~ L s c o u s  loss vtth  changes in 
blade  number  similar  to  that shown in .figure 7(a). For a given blade 
number,  the  difference  between  the loss at any given  trailing-edge  thick- 
ness  and  that at zero  trailing-edge  thickness  represents  the  contribution 
of the  trailing-edge  blockage  to  the  over-all  blade loss. 

The  two  circled  points in  figure 9 represent  results  for  the  same 
trailing-edge  blockage  but  for  different  blade  numbers  and trdling-edge 
thicknesses,  namely, 40 blade8  with  0.050-inch-thick  trailing  edges  and 
80 blades  with  0.025-inch-thick  trailing  edges.  The  difference  between 
the loss total-pressure ratios for trdling-edge thicknesses of zero and 

pressure  ratios  for  trailing-edge  thicknesses of zero  and 0.025 inch for 

therefore,  the  assumption  that  the loss associated  with  the  traillng-edge 

P 0.050 inch for 40 blades  is  equal  to  the  difference in loss total- 

- 80 blades. Similar comparisons can be  made  elsewhere on the  figure; 
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blockage is constant  for a constant  trailing-edge  blockage  but varying 
blade  number  seems t o  be  valid  for a specified  velocfty  dlagram. 

As an example of the  variation ofover-all blade loss with a change 
i n  trailing-edge  blockage,  consider  the  curve  in  figure 9 for a constant 
trailing-edge  thickness of 0.050 inch. This curve  indicates a change in 
the loss total-pressure  ratio  from  0.9535to 0.9695 uith a change from 
60 to 23 blades. Comparing this  variation w i t h  that  for  zero  tralling- 
edge  thickness  indicates  that  the l o s s  associated with trailing-edge 
blockage may be high and that this loss should  be  considered in select- 
ing the  number of blades  corresponding  to  the minimum over-all  blade 
loss .  . . . . . . . . . . . . . . . . . . . . 

It should  be  noted  that  the  optimum number of blades  decreases  with 
increases  in  the  trailing-edge  thickness.  For  example,  figure 9 indi- 
cak-s that  the  optimum  numbers of blades f o r  trailing-edge  thicknesses 
of 0, 0.010, 0.025, and 0.050 inch  are 46, 38, 30, and 23, respectively. 
Therefore,  the  use of figure 4 in determining  the  optimum  number  of 
blades  is only applicable  when  considering a constant  trailing-edge 
blockage and not  when  considering a constant  trailing-edge  thickness. 
Because  variations in trailing-edge  blockage  affect  the  value of the 
blade  number  corresponding  to a lninfmum over-all blade lOS6, it  is  neces- 
sary to determine  the  optimum  number of blades  for a specified  trailing- 
edge  thickness by considering  both  changes in the  blade  viscous loss and 
the l o s s  associated  with  the  trailing-edge  blockage.  This  can  be  done 
by  determining  the  values of the loss total-pressure-ratio  for a given 
trailing-edge  thickness  over a range of. blade  numbers  by-the  method  given 
in appendix C and then  selecting  the  blade  number  corresponding to the 
maximum loss total-pressure  ratio. 

I 

I 
I 

It  should also be  noted f r m  figure 9 that,  for a change i n  the 
trailing-edge  thickness  from  zero to 0.050 inch,  the m a x i m u m  lOS6 total- 
pressure  ratio  changes from 0.9735 to 0.9695. Therefore, i f  thick trail- 
ing edges  are  required,  little  penalty will be  paid  if  the blade number 
is  reduced  to  correspond  to  the minimum over-all  blade loss for  the 
trailing-edge  thickness  required. 

s o l i d i t y  

It was pointed out in the analysis that varying  the  solidity (hold- 
ing  the  blade  height-to-spacing  ratio  b/s and the height  Reynolds num- 
ber R% constant) as shown in figure 3(b) results in a change in the 
blade  chord  length  and  the  surface  area8 of both  the  blade and end 
walls. It m a  also noted  that  the momentum loss per  unit  surface 
area changes  with  solidity 8 8  a result  of  the  effects of a change in 
the  chord Reynolds number and the  blade  surface  'velocity-distribution, 
and that a change In the  vlscous loss ae a result of a change in momentum 

I 



- loss per  unit  surface area i s  counteracted by a change i n  the blade sur- 
face and  end-wall areas. These counteracting effects are shown by  f ig- 

about  alaopt of 0.73 t o  1.31 (or a change of about 2 t o  1) , h e r e  the 
change i n   t h e  momentum-thickness parameter never  exceeds 10 percent of 
the minimum value. This var i a t ion   i n  the viscous loss with  sol idi ty  
can be compared with  the  variation i n  efficiency f o r  the example tur- 
bines shown i n  figure 8. For exmple, from a so l id i ty  of 1.20 t o  2.25, 
wtth an optimum indicated a t  about 1.65, the  efficiency remains within 
0.01 of the maximum efficiency. A similar wide range of sol idi t ies   with 
l i t t l e   e f f e c t  on design-point performance i s  a160 indicated by the  tran- 
sonic  turbine rotors of references 7 and 12. The ro tor  of reference 7 
had a so l id i ty  of 1.86 with a design-point  efficiency of 0.869, and the  
rotor  of reference 12 had a so l ld i ty  of  2.86 with an efficiency of 0.872. 

- ure 7(b) t o  counterbalance  each  other  over a range of s o l i d i t i e s  from 

A camparison of the  var ia t ions of the  momentum-thichess parameter 
with blade number and so l id i ty  as shown i n   f i g u r e s  7(s) and (b) indicates 
that the viscous loss is more sens i t ive   to  changes in   so l id i ty   t han  it i s  
t o  the number of blades. This is especially true w h e n  comparing the 

values of so l id i ty  and blade number. This dffference in   t he   va r i a t ions  
of viscous loss with so l ld i ty  and blade number can be  explained  by  the 

as the  blade number changes. Thus, the effect of a change i n  the momentum 
loss per  unit   surface area is  o f f se t  more by changes i n  area d t h  changes 
in so l id i ty   than  it is  with changes in area due t o  changes i n   t h e  num- 
ber of blades  alone. 

f values of the momentum-thickness-parameter r a t i o  at greater  than optimum 

- fact that the blade surface area changes with so l id i ty   bu t  is constant 

Considerable e f f o r t  has been made t o  provide some means f o r  estimat- 
i n g  an optimum blade so l id i ty  f o r  a par t icular   veloci ty  diagram (see 
re fs .  5, 9, and 13). It should be noted that Zweifel's method (ref.  13) 
is developed f o r  incompressible and f r i c t ion le s s  f l o w  through a two- 
dimensional  cascade,and is based on the assumption of zero  suction- 
surface  diffusion  in the case of reaction blade rows. For three- 
dimensional  blade rows f o r  compressible  flow  with  both  high-  and low- 
reaction  blade rows and with  zero  suction-surface  diffusion  investigated 
by the  authors, t he  optimum sol id i t ies   ind ica ted  by t h e   t e s t   r e s u l t s  
closely  agree  with  those  predicted  by  Zweifel's method based on blade 
chord instead of axial chord.  (This slight change i n  Zweifel's method 
is discussed  in  appendix B.) For example, the optimum so l id i tybased  
on Zweifel's method f o r  the example turbines of th i s   repor t  is 1.55 as 
compared with  the optimum s o l i d i t y  of about 1.65 indicated by the  per- 
formance resu l t s   ( see   f ig .  8). Since a 30-percent var ia t ion from the  
optimum s o l i d i t y   r e s u l t s   i n  less than 0.01 drop in   eff ic iency,   the  
optimum sol idi ty   predicted by f igure  10, which is based on the develop- 

the optimum. 

? 

* merit of appendix B, should resu l t   in   e f f ic ienc ies   suf f ic ien t ly   c lose  to 

I 

I 

I 
! 

I 
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Changes i n  Blade Height-to-Spacing  Ratio && Solidi ty  Cmbined 

Tne variation of the momentum-thickness parameter d t h  changes i n  
both  the number of blades and the  sol idi ty  is indfca ted   in  figure 7(c). 
The area of the figure  enclosed  by  the  contour  for !$d85-D,min of 
1.10 approximately  represents  the  region  over which the  difference be- 
tween the optimum efficiency  and  the  efficiency f o r  any configuration 
withfn  the  region would be l e s s  t h a n  0.01. IYshould  be  noted that this 
region covers a fa i r ly   l a rge  range of blade number and sol idi ty;  however, 
it is again  evident that the  blade l o s e  is  more sensi t ive t o  solidity 
than it i s  t o   t h e  number of blades over the   ent i re  range of the figure. 

Height Reynolds lhmber 

The analysis showed that 8 change in   the  height  Reynolds number for 
a- given velocity diagram (holding  the blade he1  ht-to-spacing  ratio b/s 
and so l id i ty  a constant) as shown tn f igure 3Tc) r e s u l t s   i n  a change 
in  the  blade  surface and  end-wall  areas,  the weight flow, and the  blade 
chord length. It was pointed  out, however, that only the change in blade 
chord  length  affects  the  viscous  losses when considering  the  viscous loss 
per   uni t  of free-stream momentum, and that there i s  no counterbalancing 
effect-of  area.  Therefore, f o r  every-increase  in  the  height Reynolds 
number e i ther  by varying  the geometry or t he   i n l e t  flow  conditions  there 
should  be an improvement. i n  blade  performance, as shown by figure  7(d).  
I t  should-be  noted that the  height Reynolds number i s  the only priruary 
var iab le   in  equati.on (12) f o r  which there i s  no% ef fec t  t o  counteract 
the effect o F a  change in chord Reynolds number. 

The ef fec ts  of turbine  size and i n l e t  f low conditions on turbine per- 
formance have been reported many times in   t he  past. For instance, an 
improvement i n  performance with an increase  in  Reb due t o  changes i n  
inlet-flow  conditions  only has been  previouely  indicated by a ser ies  of -  
tests on a single-stage  turbine  reported i n  reference 14. For changes 
i n   s t a t o r   s i z e  only,  figure E (b )  of reference 5 indicates that, f o r  a 
constant  aspect  ratio and sol idi ty ,   the   s ta tor  blade 1086 decreases with 
increases Fn blade  height  or,   in  effect ,   the  height Reynolds number. 

F'or..rotating blade rows, similarity i s  based not only on similar 
blade geometry and flow conditims  but also  on similar work output per 
unit of! $heel  speed. This principle of s imilar i ty  f o r  turbomachinery 
ie discussed i n  detail in   reference l5. The p a m e t e r   o f t e n  used t o  
co r re l a t e the   l o s ses  of turbomachines that are similar, a8 stated  pre- 
viously, i s  a machine Reynolds number that is  defined in   reference 15 as 
the  product of the   rotor   t ip   speed and the t i p  diameter  divided by the 
kinematic  viscosity a t  inlet   condi t ions.   In  this case,   var ia t ions  in  
the t i p  diameter  represent changes in   the  scale   of the  turbine;   there-  
fore ,  changes in blade height would be proportlork~l- t o  changes i n  the 

. .  
L 

. .  
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i t i p  diameter. Thus, the same correlations of the performance of similar 
turbomachines would be obtdned  for  both  the machine and  height Reynolds 
numbers. T?e main difference  be tween the two is that, f o r  txo-dimensional 
or  three-dimensional,  statiofiary  or moving blade rows, the height Reynolds 
number can  be used;  whereas, the machine Reynolds nuqber applies  specifi-  
ca l ly   t o   ro t a t ing  components. 

The e f fec t  of the machine Reynolds number  on the performance of a 
e d e   v a r i e t y  of turbomachiaes I s  presented i n  reference 16. This refor- 
ence shows that f o r  every  turbomachine  reported  the  performance improved 
as the machine Rsynolds number increased. A similar trend i s  a l so  re- 
ported in   reference 11, vhich shows t h s t  compressor  and turbine  perfom- 
ance improves with  an  Fncrease i n   t h e  machine Reynolds number. 

SUMMARY OF RESULTS 
- 

An analytical   investigation of the e f f ec t  of changing blade  gemetry 
on the  viscous  losses of axial-f Low turbmachines has been presented. 
It, was found that the vi+cous losses  can  be  expressed as a function of 
three  independent variables: blade  height-to-spacix  ratio,  EOlidity, 
and  height Reynolds number. For values of these  variables  for a ser ies  

terminiLng the optimum values of the  blade number and so l id i ty  was derived 
on the  basis of experimental data for  four  conservatively  desiplzd tur- 
bine  rotors. The e f fec ts  of devtating fram these optimum values were 
also presented.  Since changes i n  trai.Ling-edge  blockage also af fec t   the  
blade loss total-pressure ratfco, an ana ly t ica l  means of studying i ts  e?- 
f e c t  on the number of blades  corresponding to   t he  minimum total-pressure 
l o s s  w a s  also given. 

- 
c of turbines  for  the same velocity diagram, a method of approximately de- 

In  studying t h e  effects   of  changes i n  blade  heFght-to-epacing 
ratio,   solidity,   height Reynolds number, and trailing-edge  blockage  on 
the  over-all   blade loss it was found tha t ,  for a change i n  each var i -  
able independent  of the  other  three: 

1. A change i n  blade number r e s u l t s   i n  two counteracting  effects 
resul t ing from changes i n   t h e  chord  Rerlolds number and  end-wall area. 
These two effects  counterbalance  each other f a i r l y  w e l l  over a wide 
range of blade number. 

2. A change i n   s o l i d i t y  results i n  two counteracting  effects due t o  
a change i n   t h e  mmentum loss per unit   surface area and a change i n  %he 

balance  each  other mer a more liuited range of so l id i ty  than is  the 
case when only  blade number is varied.  

I area of the  blade  surfaces and the end walls. These effects  counter- 

- 

* 
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3. A change  in  the  height  Reynolds  number,  resulting frm either a 
change in the  inlet  flow  conditions oLthe scale of the  turbine,  results 
in a change  in  the  viscous loss due to the  effect of a change in the 
chord  Reynolds  number,  and this effect is  not  counteracted by the change 
in  the bladcsurface  and  end-wall-areas. Thue, an increase  in  the  height 
Reynolds  number  results in an improvement in over-all  perf'ormance. 
Furthermore,  the  height Reynolds number is an importantparameter  that 
should be  considered  in  correlating  the  performance oLdffferent 
turbomachines. 

4. The  trailing-edge  blockage may affect to some  extent  the  choice 
of the  number  of-blades  corresponding to the minimum total-pressure lqss. 
Also, the  number of bladee  thus  chosen will decrease  with an increase in 
the  trailing-edge thickness. 

0 .  
p :  
07 

" 

Lewis Fl ight  Propulsion  Laboratory 
National Advisory  Committee  for Aeronautics 

Cleveland,  Ohio,  June 22, L956 
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SYMBOLS 

function of  blade  height-to-spacing  ratio in eq. (12 )  

blade aspect  rat-io, b/c 

function of  s o l i d i t y   i n  eq. (12) 

blade  height, f t  

function  of  height Reynolds number i n  eq. (12) 

blade  chord  length at mean radius, ft 

boundary-layer form factor ,  6/8 

spec i f ic  work, B t u / l b  

distance  along blade surfece measured from forwsrd stagnation 
point, f t  

exponent defining  effect  of change i n  Reynolds number on r a t i o  of  
momentum thickness  to chord 

number of blades 

exponent  defin-lng eiurple-power-law veloci ty   prof i le ,  - = 

absolute  pressure,  lb/sq f t  

Reynolds number based on blade  height, pWb/p 

Reynolds number based on blade  chord  length, pwc/~ 

radius, f t  

blede  spacing  or p-itch a t  mean radius, f t  

blade  trailing-edge  thickness, f t 

absolute gas velocity, f t/sec 

r e l a t ive  gas velocity,   f t /sec 

Wf 8 (e)" 

I 

I 

I 

I 
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length measured perpendicular-  to blade surface, f t  

absolute  gas-flow  angle measured from axial   direction, deg 

blade mean-section  stagger  angle measured From axial   direction, deg 

r e l a t ive  gas-flow  angle measured  from axial direction, deg 

r a t i o  of specif ic  heats 

boundary-layer  displacement  thickness, f t  

boundary-layer  displacement-thickness  parameter,  defined as 
% o t  

s cos p1 

length from blade surface  to edge of  free-stream  regionbetween 
blade wakes measured perpendicular t o  blade surface, It 

trailing-edge-thickness parameter, t 
s cos p1 

adiabatic  efficiency 

squased r a t i o  of c r i t l ca l   ve loc i ty  a t  t u r b i n e  i n l e t   t o   c r i t i c a l  
velocity 'at. MACA standard  sea-level  temperature, ( Vc,,o/Va, sz) 2 

boundary-layer momentum thickness, f t  

momentum-thickness parameter  defined &B @ t o t  
B C O S  BL 

effective momentum thickness  based  on  turbine  over-all.  performance, 
f t  (see ref. 4) 

gas viscosity, l b / ( f t )  (sec) 

gas  density,  lb/cu f t  

blade so l id i ty  at mean section, C/B 

coefficient  of aerodynamic  Loading (see  ref .  13) 

Subscripts: 

cr  conditions at Mach  number of 1.0 

I 
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2 -D 

3 -D 

free stream,  or   that   condi t ion  between  blade wakes 

hub 

r e f e r r i n g   t o  any p a r t i c u l a r  v a l u e  of 2 

mean 

minimum 

optimum 

pres su re   su r f ace  

r e fe rence   o r   base   va lue  

s u c t i o n   s u r f a c e  

NACA s t anda rd  sea-level condl t ions  

t IP 

t o t a l  of suc t ion-   and   pressure-sur face   va lues  

t a n g e n t i a l  

axial 

s t a t i o n  j u s t  upstream of blade l ead ing  edge 

s t a t i o n  just i n s i d e   b l a d e   t r a i l i n g   e d g e  

s t a t i o n  downstream  of t r a i l i n g   e d g e  where  c i rcumferent ia l ly   uniform 
cond i t ions  exis t  

two-dimensional ,   consider ing  mean-sect ion  prof i le   only 

three-dimensional ,   consider ing blade s u r f a c e  and  passage  end-wall 
boundary  layer  

Supe r sc r ip t s :  

1 t o t a l  state 

.. 
1t . r e l a t i v e   t o t a l  state 

- 
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APPENDIX B 

A METHOD OEDETEEMINING OPTIMUM SOLIDITY 

I n   r e f e r e n c e  13 a method is developed for p r e d i c t i n g   a n  optimum 
s o l i d i t y  for tu rbomachine   b lad ing .   In  this method 8 c o e f f i c i e n t  of aero-  
dynamic loading  $ f ~  is de f ined  by equat ion  (14a) of- r e fe rence  13, which 
r e w r i t t e n   i n   t h e  Symb016 o f  t h i s   r e p o r t  is 

( In   check ing   t he   de r iva t ion  of' $T, i t  was found  tha t  the re ference-  showed 
an  exponent of 2 for the term cor re spond ing   t o   cos  p2 by rnistak.e. I n  
o r d e r   t h a t  @T w i l l  always be   pos i tFv+- le t   the   sense  o f  t h e   r e l a t i v e  
gas-flow angles   meamred  f rom  the axial d i r e c t i o n  be s u c h   t h a t   t h e  term 
s i n ( p 0  - p2) i s  always positive.) 

The basFc assunrption  used  herein  and i n  the r e f e r e n c e  is that  the  
optimum s o l i d i t y  based on a x i R 1  chord  length ax,opt would be def ined  by 
a $T o f 0 . 8  f o r   a n y - s e t  of i n l e t '  and o u t l e t  flow angles.   Thus,  ( ~ ~ , ~ ~ t  
can  be   ob ta ined   f rom  the   equat ion  

Ip' 
0 

. - 1  

I n  order -  to o b t a i n  the ogtimum s o l i d i t y   b a s e d  on b lade   chord   l ength  
CJ' i n s t e a d   o f   t h a t   b a s e d  on the axial chord   length  ax from equat ion  (B2), 
it .is necessa ry   t o   de t e rmine   t he   s t agge r  .angle % (fig. 11) , because 
t h e  two s o l i d i t y   v a l u e s  are related as f o ~ l o w 6 :  

The s t a g g e r   a n g l e u ,   c a n   b e   c l o s e l y   a p p r o x i m a t e d  by assuming  tha t   the  
blades are designed 8s shown i n  fibvre 11, with  the  assumptions that  

(1) The leading and   t r a i l i ng   edges   have   ze ro   t h i ckness .  

( 2 )  The suc t ion-sur face   l engths  Prom J t o  K and from L to  M 
a r e - s t r a i g h t   a n d   s e t  a t  angles   equa l  t o  t h e   i n l e t   a n d   o u t l e t  flow angles ,  
r e s p e c t i v e l y .  
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c 

(3) The s u c t i o n   s u r f a c e  from K t o  L is  8 c i r c u l a r   m c   o f   r a d i u s  
a. To s impl i fy   the   deve lopment ,   l e t   the  blade spacing s be   equal  t o  
1.0; then, cx i s  equa l   t o  ax, and some of  the   l eng ths  shown i n   f i g u r e  11 
can  be  expressed as t r igonometr ic   func t ions   on ly .  I n  the  development, 
t h e   i n l e t  flow e.ngle PO is  cons ide red   pos i t i ve ,   and   t he   ou t l e t   f l ow 
angle  p 2  is considered  negat tve 8s shown. 

From f i g u r e  11 it can   be   s een   t ha t  

DX = s i n  Po cos Bo + a s i n  p0 - a s i n  j32 - sin p2 cos p2 (B4) 

By rea r r ang ing   equa t ion  (B4), 

S u b s t i t u t i n g   e q u a t i o n  (B2) i n to   equa t ion  (€5) gives  

2.5 cos p2 s i n (  PO - ~ 2 )  - s i n  PO cos2po + cos PO s i n  p2 cos p2 
cos po(sin po - s i n  Bz) a =  

- (x) 
The stagger   a .ngle  is given  by 

a, = t an-1  L 

and,   f rom  f igure 11, 

The value of  t he   s t agge r   ang le  is thus   de f ined   by   t he  inlet a n d   o u t l e t  
f low  angles  Po and j32, because a, j, and ux are func t ions  of  
t hese  two angles .   Therefore ,   the   value of the optimum s o l i d i t y  aopt 
can   be   de t e rmined   by   subs t i t u t ing  the va lues  of  Bo and Pz i n t o  
equat ions (BZ), (B6), and (B8) and so lv ing   equat ion  (€33). 

For a range of i n l e t   a n d   o u t l e t  flow a n g l e s   t h a t   u s u a l l y   o c c u r   i n  
t u r b i n e s ,   t h e  optimum s o l i d i t y  was  ca l cu la t ed .   F igu re  10 p r e s e n t s   t h e  
r e s u l t s  o f  these   ca lcu la t ions ,   which  were limited f o r   t h e  most p a r t  t o  
r eac t ion   b l ad ing .  

i 

I 

I 

I 

I 
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APPENDIX C .. 

EFFECT OF .VARYING TRAILING-EKrE BLOCKACE 

I n  a d d i t i o n  to the viscous . loss  a long  the  blede su r face ,   t he re  is  a 
t o t a l - p r e s s u r e  loss r e su l t i ng   f rom  the  mass-flow vo€d  behind  the  blade 
t r a i l i n g  edge ( f i g .  1). T h e o r e t i c a l   i n v e s t i g a t i o n s  of the  eff'eck o f  
t ra i l ing-edge  blockage  on  blade  losses   including  mixing are reported i n  
r e fe rences  1 and 17 ,  and  an  experimental   Lnvestigation o f  t h e  e f f e c t  o f  
a r e d u c t i o n   i n   t u r b i n e   s t a t o r   t r a i l i n g - e d g e   t h i c k n e s s  is r e p o r t e d   i n  
r e fe rence  12.  Also, r e s u l t s  o f  a n   i n v e s t i g a t i o n  of t h e   e f f e c t   o f   t r e i l l n g -  
edge  thickness   on the d rag   o f  an airfoil in the  Mach number renge-of 0.7 
t o  1.6 are g i v e n   i n   r e f e r e n c e  18. In   each   of - these   re fe rences   the- losses  
Including  mixing increase wi th  both t re i l ing-edge   th ic l rness   end  Mach 
number. 

Even  though  the  magni tude  of   the  change  in   total-pressur-e  loss f o r  
a given  change i n  t ra i l ing-edge   b lockage   cannot   be   accura te ly   de te rmined  
from  theory (see ref. 12), at leaet  the t r ends  o f  t h e   t o t e l - p r e s s u r e  loss 
w i t h   v a r i a t i o n s   i n  'ma.il-Lng-edge blockage can be  approximated. 

Var-Lation oFTrai l ing-Edge  Thickness  Only 

For a v a r i a t i o n   i n   t r a i l i n g - e d g e   t h i c k n e s s   . o n l y ,  the cond i t ions  
i n s i d e   t h e   t r a i l i n g  edge ( s t a t t o n  1 i n   f i g .  2 )  can be approximeted f r o m  
spec i f i ed   des ign   cond i t ions  at s t a t i o n  2. From the  design  weight-flow 

parameter a t - s t a t i o n  2, - the wetght - f low  paremeter   a t -e ta t ion  1 

can  then  be  determined by cons ide r ing   t he   r educ t ion   - i n   f l ow area a t t r i b u t e d  
t o  t ra i l ing-edge   b lockage   by  

(:Zr) 2 9 

I 

The flow angle a t  s t a t i o n  2,  pz, i s  used i n   e q u a t i o n  (Cl) b e c a u s e   i t w o u l d  
be  spec i f ied   by   the   ve loc i ty   d iagram  and  i f  c l o s e l y   a g r e e s   w i t h  p 1  in 
most c a ~ e s .  Assuming no change   in  the whirl component o f  t h e   v e l o c i t y ,  

Then by means of  a "we igh t - f lowr r   cha r3   fo r   t he   app rop la t e  value o f  the 
r a t i o  of s p e c i f i c  heats r, such a6 f i g u r e  3 of r e fe rence  19, t h e   c r i t i c a l  

.. 
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- 
veloci ty   ra t io  a t  s t a t ion  1, can  be  determined  for  the  values 

c obtained i n  equations (Cl) value of  p 1  can  then be 
ob te  ined from 

In   t he  method of computing a loss total-pressure  ra t io   given  in   ref-  
erence 3, the  displacement-thickness  parameter S ~ - D  is computed from 
t h e  equation 

where H is the form factor ,  and i ts  values  used  herein  correspond t o  a - 
simple-power-law velocity  profile  with an exponent n of  1/7. The form 

fac tor  H is a function  of and increases as 

increases. Thus, H increases t o  some small degree with’an  ‘increase i n  
trailing-edge  blockage. However, SS-D decreases  only sl-LghtLy w i t h  an 
increese  in  t, because the  increase in H is  counteracted by a s l igh t  
decrease i n  B3-D. 

The trailing-edge-thickness  parameter is defined as 

t 
= s cos p 1  

The value of  6te is directly  increased  by an increase  in  t , , a n d  t h i s  
increase i s  Dnly slightly  counteracted by the accompanying decrease i n  
01 - 

Because the  increase i n  t resu l t s   d i rec t ly   in   an   increase   In  Etc 
- 

and ind i r ec t ly   i n   r e l a t ive ly  small decreases i n  8:-D and 6 5 - ~ ,  the 
blade loss total-pressure  ra t io  decreases with  an  increase  in t as 

- shown by f igure 9 for  any specif ied number of  blades. . 

I 

I 

t 

I 

1 

! 
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Variation of  Number of Blades Only 

U C A  RM E56F21 

Consider  next a variation of the number of blades N only  while 
maintaining  constant  solidity,  trailing-edge  thickness,  blade  height, and 
blade  outlet   velocity and angle a t  s t a t ion  2 .  Such a change i n  N would 
vary  the  trailing-edge  blockage and the  blade  spacing 8 .  An increase i n  
s would increase p 1  toward i t s  l imit ing v a l u e  B2, and i t  would also de- 
crease  the  value OF b/s. A decrease  in b/s could result  i n   e i t he r  an 
increase  oLdecrease i n  @3-D, depending  on the  range of  values of b/s,  

as can be seen  by  equation ( 1 2 ) .  With a change i n  @$"D, there would be a 

corresponding change i n  SZ-D of. .  equation (C4), affected  only  sl ightly by 

a small change i n  H with a small change i n  - Also,  an  increase 

i n  s and the  result ing small increase in j31 would r e s u l t   i n  a decrease 
i n  S t e  of equation ( E ) .  

(;r)fs, I* 

The e f f e c t   o e t h e  change i n  s (represented by 8 change i n  N i n  
f i g .  9 )  on the loss total -pressure  ra t io   for  a 6te  equal t o  zero is 
shown  by the  curve for t equal   to  0 in   f i gu re  9.  This curve of  loss 
total-preseure  ratio  indicates the bame trend as that  for the momentum- 
thickness  parameter shown in f i g u r e  7[5) ,  considering the change i n  the 
shape of t h e  curve 88 a r e su l t  of using two different  abscissas  to  repre- 
sent the change i n  blade number N .  The ef fec t  of-varying the  t ra i l ing-  
edge thickness t, which correspond6 t o  changing E t e ,  is shown for a 

range of values o f  t and N i n   f i gu re  9, which is based on the   s ta tor  
of reference 8. 

Trailing-Edge Blockage Considerations 

As previously mentioned, the total-pressure loss Increases as the 
trailing-edge  thickness  increases  for a given number of blades; therefore, 
t h i n   t r a i l i n g  edges are  desirable from an  aerodynamic standpoint. Bowever, 
stress limi-tations and fabricat ion  pract ices  sometimes r e s t r i c t   t h e  
designer from specifying  thin  t ra i l ing edges. Even so, an  attempt  should 
be made t o  reduce the trailing-edge  thickness..as. mu-ch as good  judgment 
will allow. 

Considering  the  fact  that  there must be a f ini te   t ra i l ing-edge 
thickness, which resul ts  i n  a flow blockage a t  the t r a i l i n g  edge, a n  ap; 
proximation of the optimum  number of blades can be determined by calculat-  
ing the loss total -pressure  ra t io  pz/p: over a range of values of  t 
and N and plot t ing  the results. on a fkrnf1.y of curves  such as those 

I 

L 
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- shown i n   f i g u r e  9 .  The point  where p:/pg i s  a maximum would be the 

bes t   des ign   conf igura t ion   based   on  the  theory.  
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Because  the  var ia t ion of blade loss wlth   t ra i l ing-edge   b lockage  
depends on t h e   o u t l e t   f l o w   a n g l e  as well  as t h e  blade o u t l e t  Mach number 
( r e f .  l), t h e   e f f e c t  o f  varying  t ra i l ing-edge  blockage w i l l  vary from 
design to  des ign .   Therefore ,   for   each   des ign ,  a series of  loss t o t a l -  
p r e s s u r e   r a t i o s  would  have t o  be c a l c u l a t e d  as prev ious ly   d i scussed  t o  
de te rmine   the   e f fec t   o f   devia t ing   f rom  an  optimum t ra i l ing-edge   b lockege .  
For  example, f i g u r e  9 p re sen t s   such  a v a r i a t i o n   i n  loss t o t a l - p r e s s u r e  
r a t i o   f o r   t h e   s t a t o r  of  r e f e r e n c e  8 wi th  a d e s i g n   o u t l e t  c r i t i ca l  veloc- 
i t y   r a t i o   o f  1.11 a t  a des ign   ang le   o f  62O. For t h i s   a t a t o r ,  i t  c8n be 
seen   t he t   fo r   t r e i l i ng -edge .   t h i cknesses  on t h e   o r d e r  of 0.010 inch   t he  
e f f e c t  of   varying  the number of  blades is small, bu t   fo r   t h i cknesses   on  
tke o rde r  of  0.050 inch   t he  effect  of varying the number o f  blades is 
large. These loss t r ends  for varying  blockages are s i m i l a r   t o   t h o s e  
t h e t  would be ob ta ined   fo r   any   o the r   b l ade   conf igu ra t ion ,   excep t   t ha t   fo r  
Lower e x i t   v e l o c i t i e s   t h e  effect  of blockage  would  not be as great 
( r e f .  1). 

In- 
I The re la t ive   impor tance   o f   t ra f l ing-edge   th ickness   depends   l a rge ly  e on  the   ranges  of  blockage  and Mach number being  considered  and  the effect  

w on  over -s l l   per formance  (see r e f .  1 2 ) .  A value of  6te under 0.05 would 
not be cons ide red   de t r imen ta l   i n  most cases, but   va lues   o f  8te over  
tLis value  should be examined from t h e   s t a n d p o i n t   o f   t h e   e f f e c t   o f  
blockage on the loss t o t a l - p r e s s u r e   r a t i o .  It is p o s s i b l e ,  8s  i n d i c a t e d  
b y   f i g u r e   9 ,   t h a t   h i g h   b l o c k a g e s   c o u l d   r e s u l t   i n   h i g h   l o s s e s   i n   t o t a l  
p re s su re .   The re fo re ,   t he   s e l ec t ion  of t h e  f i n a l  blade conf igu ra t ion  
should  be guided to  some e x t e n t   b y  the c o n t r i b u t i o n   o f   t h e   t r a i l i n g - e d g e  
blockage to  t h e   o v e r - a l l   t o t a l - p r e s s u r e  loss. 
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TABU3 I. - DATA FOR FIVE EXAMPIX TURBINES 

[Design  values me based on condi t ions  
a t   b l a d e  mean radius.] 

Number of blades, N 

S o l i d i t y ,  a I 2.586 I 1.778 I 1.293-1 0.970 

Equiva len t   . apec i f   i c  work output ,  
Aht/@,,, Btu/lb 

A d i a b a t i c   e f f i c i e n c y  a t  design 
s p e c i f i c  work output  and 0.865 0.886 0.891. 0.870 
SPEd ,  17 

Trailing-edge th ickness ,  t, in.  I 0.030 1 0.030 I 0.030 I 0.030 
R o t o r - o u t l e t   r e l a t i v e   c r i t i c a l  

v e l o c i t y  r a t i o ,  ( w / w ~ ~ ) ~  1 0.833 1 0.854 1 0.892 1 0.935 

R o t o r - o u t l e t   r e l a t  Ive flow angle, 
82, 1 49.9 1 48.1 1 11.61 43.0 
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1.778 

3.94 

16.14 

0.087 
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Figure 1. - Typical blade indicating momentum loss cbaracteristlcs due t o  boundary layer and 
mass-flow void behind trail ing edge. 
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FQure 2. - Boundary-Layer charecteristica for two-dimensional cascade. 
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(a) Variation of b/s 
( U  and R% ,con- 
stant). 

(b) Variation of u 
(b/S and % Con- 
stant). 

( c )  Variation of Reb Kith 

and a constant). 
cbuge in b only (b/s 

Figure  3. - Variation Of blade coniiguratfon Kith ewch of the t h e  follming independent  vsriablea: 
(a) blade  height-to-spacing ratio b/s, (b) solidity u, and (c) height Reynolds umber Reb. 
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Figure 4. - Optimum number of blades for ranges of hub-tip 
ratio and stagger angle, considering only blade viscous 
loss. Fxponent m, 1/5. - 
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Figme 5. - Variation in  aspect  ratio.carresponding t o  minimum vlscow loss for a given 
solldlty over range of stagger angles. Expnent m, 1/5. 
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Figure 6. - Variation of effective rotor blade 
momentum-thickness to chord ratio with aolidity 
based on results of fou r  turbines of-reference 
9. Exponent m, 1/5. 
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(a)  variation with blade-number ratio. 

Figure 7. - V a r i a t i o n  of mmentum-thickness-paremeter ratio. Exponent m, 115. 
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-6 .8 1 .o 1.2 
Solidity  ratio,  a/aOpt 

(b) Variation w i t h  solidity ra t io .  

Figure 7.  - Continued. Variation of momentum-thickness-parameter ratio. 
Exponent- m, 1/5. 
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Figure 8 .  - Variation of efficiency with so l id i ty  for four turbinee 
of reference 9 .  
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Figure 9. - Variation of 1086 total-pressure rat io  with number o f  blades and trailing- 
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Figure 10. - Optimum s o l i d i t y  f o r  a range of blade in l e t  and out le t  
relative  flow angles, based on assumptions of reference 13. 
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Figure 11. - Blade deeign variables used in determining stagger angleT 
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